Cannon by KFCams

Fahad Khan, Daniel Felix-Kim

EECS 395 Engineering System Design Il
llya Mikhelson
Spring Quarter 2017

Table of Contents

Abstract
Introduction

Design Description
System Overview
Block Diagrams
Webcam Algorithms and Code
Server Configuration
Face Detection Algorithms and Code
Website
PCB Design
3D Printing

Final Product
Initial Goal vs. Final Product
Performance and Limitations

Challenges Encountered

Planning and Organization
Gantt Chart
Communications Among Team Members
Splitting Tasks Among Team Members

Conclusion - Daniel
References
Code

Class Feedback - Daniel

a b~ b W ®

11
13
15
17
19

20
20
20

21

22
22
22
22

23
24
24
24

Abstract

The internet of things is an architecture for extending the functionality of small electronic
devices with limited computational power. Within this type of architecture, small computing
devices are networked to provide them with more powerful, remote computers. Thus, the
endpoints are generally only responsible for data collection, transfer, and actuation. The remote
servers (the “cloud”) are responsible for the heavier task of data processing and action planning.
In this report we utilize the the internet of things architecture to create a cloud connected
webcam. By leveraging the added computational power of the cloud, our webcam is able to
automatically detect faces in an image frame, and track the face as it moves around.

As mentioned above, due to the limited computational power available on the webcam,
we elect to offload the computation required for face tracking onto a remote server. Our selected
architecture consists of a webcam as an endpoint that simply streams JPEG images to a remote
server (over HTTP/TCP) and is placed on a pan and tilt based composed of two servo motors.
The pan and tilt base allows the webcam to follow a face as it begins to exit an image frame
using commands from a remote server. The webcam is a custom designed embedded system
running compiled C on an Atmel microcontroller and is enclosed in a 3d printed case.

The server, running on an Amazon EC2 instance, is responsible for image processing,
performing positioning calculations, and hosting the website files. For image processing, we
utilize Python openCV libraries to perform face tracking with the Haar Cascades algorithm.
Positioning calculations are then performed using a basic heuristic approach on the server and
are translated to servo control commands on the webcam. A website is developed to display the
stream while also allowing manual control of the webcam and its features through the use of
websockets!".

With our architecture we were able to develop a webcam that can be remotely controlled
and can automatically track face while streaming at roughly 3-4 frames per second. We also
extended the face detection functionality to overlay Snapchat like filters on detected faces using
bit masking in openCV. .

Introduction

The internet of things (loT) is defined as the inter-networking of physical devices
embedded with computational power. It allows several devices with limited computational power
to leverage their connectivity to offload computational tasks. This allows a network of simple
“smart” devices to perform complex tasks that may require running advanced machine learning
algorithms and techniques on large data sets. These data sets are generated by the variety of
sensors found on smart devices. Take, for example, a wireless webcam which generates large
data sets corresponding to images. Image processing is usually too complex of a task to
perform on the small microcontrollers often found on embedded webcams. Our embedded
webcam uses an Atmel ATSAM4S8B capable of operation up to 120MHz with 512KB of flash
memory and 128KB of SRAM. While these specifications are sufficient for interfacing with a
camera and WiFi card, the addition of image processing libraries and algorithms would
drastically cut down the frame rate. To accomplish our goal of implementing face tracking
functionality, it was essential to have a significantly faster frame rate compared to last quarter’s
design. Therefore, to add functionality to an embedded webcam, offloading computation to
remote servers was the natural choice.

This report presents a webcam which streams its images to a server running OpenCV
libraries. The server is capable of near-instantaneously running both the Haar Cascades

algorithm for detecting faces and the code for calculating camera positioning such that the
webcam is able to automatically track faces. Moving the image processing to a server allowed
for a faster frame rate and consequently low latency positioning corrections. Based on these
requirements we generate the following goals for functionality the webcam must provide:

1. Face detection on a remote server
a. Images should be marked with an indicator of faces present
b. Images and website should be rehosted on remote server
i. Users should be able to access the webcam from anywhere in the world
2. Webcam rotation/tilt based on face positioning in frame
a. This necessitates at least 1 frame per second for accurate tracking
3. Manual control of webcam position from the website

Design Description

System Overview

As mentioned above, our webcam uses a fairly traditional 10T architecture. The webcam
consists of three main components: A WiFi chip to send data to a server, a camera sensor that
captures the actual images, and a microcontroller that allows us to control the interactions
between all the components. The webcam circuit is a fully embedded system soldered onto a
custom designed PCB. The design also includes several header pins to monitor serial output,
program the WiFi chip, program the MCU with an Atmel ICE unit, and send power and PWM
signals to two servos. The webcam can associate to a WiFi network and begin streaming
images to our remote server over a persistent TCP client. Communication between the server
and webcam occurs over the HTTP protocol. The webcam will post images and receive servo
commands as a response. Images are transferred at a rate of roughly 3-4 frames per second.

For the WiFi chip, we use the ACKme AMWQ004 which runs Zentri-OS. Zentri-OS
provides kernel calls for TCP capabilities. The file system capabilities of the chip are ignored for
our purposes. The camera sensor is an Omnivision OV2640, a 2mp full color camera with a
SCCB interface for data control. Both the WiFi chip and camera are controlled by an Atmel
ATSAM4S8B microcontroller. 12C (TWI) is used by the MCU to communicate with the camera,
while UART is used to communicate with the WiFi chip.

Our remote server runs on the Amazon Web Services (AWS) platform as an EC2
instance. The EC2 instance is a networked virtual machine running Ubuntu 16.04. We open port
80 on the server to allow HTTP requests to be made to the server. Requests are handled by
NGINX 1.12, which implements a REST-like API for distributing and forwarding HTTP requests
(see figure 3). For this project, it is configured to accept requests for webpages (GET root),
websocket connections (GET-WS /camsocket), and for image processing (POST /detect).
Image processing requests made to NGINX (POST /detect) are proxied to a local Tornado
server running Python and OpenCV. This script is responsible for detecting faces and
calculating positioning commands for the pan and tilt base under the webcam. After processing,
the resulting positioning commands are sent back to the webcam WiFi card and translated to
PWM values. The Tornado server alerts clients (browsers) to the presence of a new, processed
image through the data websocket connection. Upon this message, browsers are instructed to
fetch the new image with client-side javascript code, which are then displayed on the website,
KECams.me.

http://kfcams.me/

The client-side javascript code initializes data websocket connections for clients wishing
to view the image stream. Functionality is included for switching between auto and manual
control of the pan/tilt and for the application of face filters. These settings are communicated
over the data websocket connections. Under manual mode, the positioning calculations
performed by the server are replaced by commands sent from browsers.

Block Diagrams

___+» Browser . Browser

L= (client) (client)
S
\\\
e
% Browser oy
Browser (client) Browser (client)
(client) (client)

Fig 1: Webcam as server Fig 2: Webcam as endpoint

Figures 1 and 2 above present the two possible architectures for a wireless streaming
webcam. Figure 1 treats the webcam as a server where clients (browser) connect directly to the
WiFi chip. The WiFi chip stores the image and website files on its filesystem. The limitation of
this architecture, as mentioned above, is that computational power is limited on the webcam
microcontroller and on the WiFi chip. The microcontroller will not be able to perform face
detection and the WiFi chip cannot handle more than roughly 4 simultaneous data streams
(clients). Also, without further router configuration of port forwarding, the webcam can only be
accessed by browsers on the same local network. The architecture in figure 2 solves most of
these issues by using a virtual machine in the cloud to perform server duties.

Figure 3 below shows the details of the server architecture as described in the system
overview. Note that currently, processed images are stored on the filesystem of the server.

Amazon ECZ: Ubuntu 16.04

HTTP post over
persistent TCP NGINX Tomado
connection KFCams.me:80 Localhost: 8888

B /detect S

— * Face detection -
8 =
leadcast update |t [mage
(With face

Data ,,_”"—V et __—+ Websocket detection)

Browser "—————E__K.
! (Root}

Request jﬂdex hT.ITH Direc
or image when stafic files
available

Fig. 3: Server Architecture

Webcam Algorithms and Code

The webcam was programmed in C using the Atmel Studio development environment.
The structure of the program includes a main.c file that performs the actual execution of
webcam operations. It is also responsible for setting up the PWM interrupt handlers for the pan
and tilt servo motors, as well as the TCP client used to communicate with the server. Below is
the skeleton for the main file with some code snippets.

int main (void)

{

sysclk init();
board init();
wdt disable (WDT) ;

configure usart wifi();
configure wifi comm pin();
configure wifi web setup pin();

/* PLLA work at 96 Mhz */
pmc_enable pllack(7, 0x1, 1);

//pwm setup for servos
Only channel settings are included

pwm _clock t clock setting = {
.ul clka = PWM FREQUENCY * PERIOD VALUE,
.ul clkb = 0,
.ul mck = sysclk get cpu hz()

i

pwm_init (PWM, &clock setting);

g pwm channel led.alignment = PWM ALIGN LEFT;

g pwm channel led.polarity = PWM HIGH;

g pwm channel led.ul prescaler = PWM CMR CPRE CLKA;
g pwm channel led.ul period = PERIOD VALUE;

g pwm channel led.ul duty = INIT DUTY VALUE;

PIN PWM LEDO CHANNEL;

g pwm channel led.channel

pan_duty = INIT DUTY VALUE;
tilt duty = INIT DUTY VALUE;

/* Enable PWM channels for Servos */
pwm channel enable (PWM, PIN_PWM_LEDO_CHANNEL);
pwm channel enable (PWM, PIN PWM LED1 CHANNEL) ;

/* Wifi setup commands excluded */

ack = 0;
closed = 1;
setup flag = 0;

//Check for network connectivity and setup option desired
while (!ioport get pin level (NETWORK CONNECT PIN)) {
if (setup flag) {
usart write line (BOARD USART, "setup web\r\n");
setup flag = 0;

}

init camera();
configure camera();

//TCP Client initialization

write wifi command("tcpc 52.15.48.211 80\r\n", 1);
closed=0;

ack=0;

loop=0;

while (1) {

if (setup flag)

{
write wifi command("setup web\r\n", 1);
setup flag = 0;

}

else if (ioport get pin level (NETWORK CONNECT PIN)) {
ack = 0;
start capture();
write image to file();
set pwm() ;

A wifi.c and wifi.h are included to take care of interactions with the WiFi card. This file
includes some of the functions listed below. To approach these functions, we first referenced
the USART hardware handshaking example to set up our own USART communication port. We
then filled in the functions to handle interrupts by referencing the examples of interrupts in the
OV7740_IMAGESENSOR_CAPTURE_EXAMPLE image sensor example program. We then
filled in the functional programs as discussed below:

void process data wifi (void): Processes the full command from the WiFi chip stored
in the command buffer. This is done by using several if statements that call the strstr function to
compare the command buffer to expected values. Since the servo positioning is calculated on

the server, it is received as a response by the WiFi chip. The response is parsed in this function.
The structure is given below:

if (strstr(dump buffer, "Set OK") || strstr(dump buffer, "Success") ||
strstr (dump buffer, "\nSuccess") || strstr(dump buffer, "\nSet OK")) {
ack = 1;

//Parsing the servo command response

else if(strstr(dump buffer, "cmd=") || strstr(dump buffer, "\ncmd=")) {
post = 1;
ack = 1;

for (int i=0; i<BUFFER SIZE; i++)
{

if (dump buffer[i] == 'c' && dump buffer[i+l] == 'm' &&
dump buffer[i+2] == 'd'")
{
command[0] = dump buffer[i+4];
command[1l] = dump buffer[i+5];
command[2] = dump buffer[i+6];
command[3] = dump buffer[i+7];
break;

}

//Check for closed TCP client

else if (strstr(dump buffer, "Closed") != NULL || strstr(dump buffer, "[Closed:
01") || strstr(dump buffer, "\n[Closed: 0]")) {
ack = 1;
closed = 1;
}
else if (strstr(dump buffer, "not found") != NULL || strstr(dump buffer,
"Unknown command") || strstr(dump buffer, "\nUnknown command")) {
ack = 1;

clear dump () ;

void write wifi command (char* comm, uint8 t cnt): Writes a command to the
WiFi chip using usart write line (). Waits for acknowledgment or a timeout of cnt
seconds. This is done by monitoring the global counts variable which is incremented every
second (initialized in the main.c file).

void write image to file (void): Transfers images taken by camera to remote server.
Note that we use HTTP 1.1 to communicate with the server so that we may reuse the TCP
socket for multiple transfers.

void write image to file(void)
{
//Check if no image, return if so
if (image_end == image start || image end < image start) {
return;

}
else {
uint32 t num dig = numPlaces (image end-image start);
if (num dig < 3) {
return;

}

char create string[30];

char header[150];

sprintf (create string, "write 0 $lul\r\n",
83+num_dig+image end-image start);

sprintf (header, "POST /detect HTTP/1.1\r\nContent-Length:
$d\r\nContent-Type: imagebin\r\nHost: 10.0.0.0\r\n\r\n",
image end-image start);

if (closed)
{

open_connection();

pan offset = 0;
tilt offset = 0;

usart write line (BOARD USART, create string);

//Send HTTP 1.1 header and image data

usart write line (BOARD USART, header);

for (int jj = image start; jj < image end; Jjj++) {
usart putchar (BOARD USART, cap dest buf[jj]);

counts = 0;
while (counts < 1 && 'ack) {}
ack = 0;

//Read response from server
write wifi command("read 0 200\r\n", 1);
ack = 0;

A camera.h and camera.c file are included for interacting with the OV2640 image sensor.
The code here was approached in a similar fashion to wifi.c. We adapted examples from the
OV7740_IMAGESENSOR_CAPTURE example program to write the functions for configuring
the camera over TWI/I2C, starting an image capture and writing it to a buffer, and for enabling
and handling the vsync interrupt. Adaption required switching to pclk1 and using the clock
prescaler to bring plla down from 96 to 48 mhz. I12C is used in the case to write specific
commands directly to the registers of the image sensor. Then we filled in the functional
programs as seen below:

uint8 t find image len(void) : Finds length of captured image to prepare for image
transfer to WiFi chip. Note that we check 7 bytes of the JPEG header because we ran into
several issues with corrupted JPEG images.

uint8 t start flag = 0;
image start = 0;
image end = 0;

for (int ii = 0; ii < JPG_SIZE - 1; ii++) {
uint8 t first byte = cap dest buf[ii];
uint8 t second byte = cap dest buf[ii+l];

uint8 t sixth byte = cap dest buf[ii+5];
uint8 t jfif byte = cap dest buf[ii+6];

if (!start flag && first byte == OxFF && second byte == 0xD8 &&
third byte == OxFF && fourth byte == 0xEO0 && fifth byte == 0x00 && sixth byte
== 0x10 && Jfif byte == 0xda) {
start flag = 1;
image start = ii;
}
if (start flag && first byte == OxXFF && second byte == 0xD9) {
image end = (i1i+2);
return 1;

Finally, we include a servo.h and servo.c to handle the PWM interrupt and perform
translations of positioning commands from the server to actual PWM values.

Void PWM Handler (void) is responsible for updating the duty cycle value for pan and tilt
servo motors. It also performs checks to ensure that we do not set the value too high or low.

void PWM Handler (void)
{

uint32 t events = pwm channel get interrupt status (PWM);

/* Interrupt on PIN PWM LEDO CHANNEL */
if ((events & (1 << PIN PWM LEDO CHANNEL)) ==
(1 << PIN PWM LEDO CHANNEL)) {
g pwm channel led.channel = PIN PWM LEDO CHANNEL;

pan _duty += pan offset;
pan duty = (pan_duty < 800) ? 800 : pan duty;
pan_duty = (pan_duty > 2400) ? 2400 : pan duty;

pwm channel update duty(PWM, &g pwm channel led, pan duty);

Repeat for channel 1

10

}

Void set pwm(void) : Performs the translation from the server positioning command to
actual servo motor duty cycle values. The command is a simple bitmap that represents whether
the camera should pan left or right, or if it should tilt up or down. The pwm frequency is set at
50Hz and the period is 20000 samples of which we offset the current duty cycle value by 2
samples at a time. Specific details of the bitmap can be seen in the code snippet below:

void set pwm()

{
pan _offset = 0;
tilt offset = 0;

//bit 0 is pan enable
if (command[0] == '1")
{
//bit 2 is left or right
if (command[2] == '1")
pan_offset = OFFSET FACTOR;
else
pan_offset = OFFSET FACTOR*-1;

}

//bit 1 is tilt enable
if (command[1l] == '1")
{
//bit 1 is up or down
if (command[3] == '1")
tilt_offset = OFFSET_FACTOR;
else

tilt offset OFFSET FACTOR*-1;

Server Configuration

As outlined in the system architecture, our backend system is composed of a
publicly-facing server running NGINX and a processing server running Tornado. NGINX is a
free, open-source, high-performance HTTP server and reverse proxy. We configure it to process
HTTP requests according to the REST-like api defined above. It is directly responsible for
serving static web files and images, but any requests for processing are forwarded to Tornado.
The configuration is given below:

upstream tornadoserver {
server 127.0.0.1:8888;

}
tcp nodelay on;
client body buffer size 50k;

11

server {
listen 80 default server;
root /home/ubuntu/public html;
location /detect {
proxy pass http://tornadoserver/;
proxy redirect http://localhost:8080/ /;

proxy read timeout 60s;

proxy set header Host Shost;
proxy set header X-Real-IP Sremote addr;
proxy set header X-Forwarded-For

Sproxy add x forwarded for;
}
location /socket {
Forward to Tornado
proxy pass http://tornadoserver/socket;

proxy http version 1.1;
proxy set header Upgrade S$Shttp upgrade;

proxy set header Connection "upgrade";

location /images {

root /home/ubuntu/data;

Processing is handled by a server running Tornado, a python web framework that we
employ as a local server. NGINX forwards image processing requests to the root of this server
while websocket connections are handled by /socket. Requests made to root are handled by the
mainHandler class, which calls facedetect.py to perform face detection and save the image to
the filesystem. If face filters are specified by clients, facedetectfilter.py is called so that filters can
be applied to the image before saving. These files are discussed below.

Requests to the /socket are handled by the WebSocketHandler class. Methods
implemented are as follows (implementations can be found at
https://github.com/fahadkh/kfcams):

check origin(self, origin): Checks that websocket requests are made with from
browsers connected to kfcams.me.

open (self) : Called when websocket connections are established. The current connection is
added to the global list of clients that must be updated when new images arrive.

on message (self, message): Data messages from clients. This data is parsed and

saved to be sent to the webcam when it makes requests. Data may include settings for auto
versus manual track, filters on or off, or actual commands for panning and tilting the webcam.

12

https://github.com/fahadkh/kfcams

on close (self) : Called when clients disconnect. The function removes them from the
global list of connected clients.

A global function called update_clients() is also included and called when the
mainHandler is done processing an image. It tells connected clients that they may request the
new image.

Face Detection Algorithms and Code

For the face detection processing, we used Haar Feature-based Cascade Classifiers as
implemented in OpenCV. This algorithm is a machine learning based approach, where the
model is trained using various images with and without faces. In our facedetect.py, we use the
standard method of using pre-trained classifier XML files included in OpenCYV to train a face and
eye detector.

face cascade =
cv2.CascadeClassifier('classifiers/haarcascade frontalface default.xml')
eye cascade = cv2.CascadeClassifier('classifiers/haarcascade eye.xml')

imgl = cv2.imread('face.jpg')

image rows,image cols,image channels = imgl.shape
grayl = cv2.cvtColor (imgl, cv2.COLOR BGR2GRAY)

faces = face cascade.detectMultiScale(grayl, 1.3, 5)

For the standard facedetect.py with no filters, upon detecting the face, the function
draws a blue rectangle around the face, and green rectangles around eyes. The center of the
face is then calculated so that it can be used for tracking.

for (x,y,w,h) in faces:

cv2.rectangle (imgl, (x,Vy), (x+w,y+h), (255,0,0),2)

centerFrame = x+w/2,y+h/2

cv2.rectangle (imgl, (centerFrame[0],centerFrame[l]), (centerFrame[0],center
Frame[1]), (0,0,255),2)

roi gray = graylly:y+h, x:x+w]

roi color = imgl[y:y+h, x:x+w]

eyes = eye cascade.detectMultiScale (roi gray)

for (ex,ey,ew,eh) in eyes:

cv2.rectangle (roi color, (ex,ey), (extew,ey+eh), (0,255,0),2)

We chose an area of the image where the face is considered centered, and if it went
outside the boundaries, we sent a 4 digit binary number to the microcontroller. The command[0]
and command[1] values directed whether the camera should pan or tilt respectively, with 1
confirming the motion. The command[2] and command[3] determined the direction that the
camera should move.

13

if (not centerFrame[0] == 0 and not centerFrame[l] == 0):
if (centerFrame[0] < centerImage[0O]-offsetImage[0]): #Face is to
the left of center
command[0]

1 #Pan Camera

command[2] = 0 #Pan left
elif (centerFrame[0] > centerImage[0] + offsetImage[0]): #Face is
right of center
command[0] = 1 #Pan Camera
command([2] = 1 #Pan right
if (centerFrame[l] < centerImage[l] - offsetImage[l]): #Face is

below center

#Tilt Camera
#Tilt down

command [1] 1
1
elif (centerFrame[l] > centerImage[l] + offsetImage[l]):
1
0

command[3] =

#Tile Camera
#Tilt up

command[1l] =
command[3] =

To implement the filters, we had to resize and center the filter.png image to properly fit

over each face. The filters were applied using bitwise masking, which required the mask size to

match the size of the region of interest in the original image. This process was outlined in the

OpenCV Python Documentation and is similar to what Noah Dietrich did for adding mustaches

to a video stream®?.

for (x,y,w,h) in faces:
centerFrame = x+w/2,y+h/2
roi gray = graylly:y+h, x:x+w]
roi color = imgl[y:y+h, x:x+w]
eyes = eye cascade.detectMultiScale(roi gray)

face filter = cv2Z.imread('dog filter.png')
xl = x - 15

X2 = X + W

yl = vy =50

y2 = h+y + 70

rows,cols,channels = face filter.shape

Check for clipping

if x1 < O:
xl =0

if y1 < O:
yl =0

if x2 > image cols:
x2 = image cols

if y2 > image rows:
y2 = image rows

14

Re-calculate the width and height of the filter image
filterWidth = x2 - x1
filterHeight = y2 - yl
Re-size the original image and the masks to the filter size

Now create a mask of logo and create its inverse mask also
img2gray = cv2.cvtColor (face filter,cv2.COLOR BGR2GRAY)

ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH BINARY)
mask inv = cv2.bitwise not (mask)

filter apply = cvZ2.resize(face filter, (filterWidth, filterHeight),
interpolation = cv2.INTER AREA)

mask = cv2.resize (mask, (filterWidth,filterHeight), interpolation =
cv2.INTER AREA)

mask inv = cv2.resize(mask inv, (filterWidth,filterHeight), interpolation
= cv2. INTER_AREA)

Create region of interest (roi) in base image

roi = imgl[yl:y2,x1:x2]

Now black-out the area of logo in ROI

imgl bg = cv2.bitwise and(roi,roi,mask = mask inv)

Take only region of logo from logo image.

img2 fg = cv2.bitwise and(filter apply,filter apply,mask = mask)
Put filter in ROI and modify the main image

dst = cv2.add(imgl bg,img2 fg)

imgl[yl:y2,x1l:x2] = dst

Website

The website is used by clients to observe the image stream from the webcam. It is also
used to adjust webcam settings such as the tracking mode (manual versus auto) and whether
faces should be outlined by a bounding box or with snapchat-like filters. The website layout is
programmed using HTML, CSS, and bootstrap (a CSS framework that adds several CSS
classes for element placement and design).

15

AKFCams

ABOUT PORTAL v

Fig 4. Homepage

The website is modeled after an entire home automation system, but currently only
supports the webcam functions. To actually support the image stream, a client-side javascript
file is included to enable the websocket data stream. This file maps the buttons seen in figure 5
below to messages sent over the websocket connection. The mapping is given in table 1. Note
that a timestamp is included in the image request to ensure that the browser does not cache
images. Up, Down, Left, and Right buttons are directly overlaid on the image and appear when

the cursor hovers over them.

Table 1. Action and Result, webcam_functions.js
(https://github.com/fahadkh/kfcams/blob/master/public _html/scripts/webcam_functions.js)

Action

Message/Result

Button Press: Filter On

{fmode: “on”}, Filter On button becomes Filter Off

Button Press: Filter Off

{fmode: “off’}, Filter Off button becomes Filter On

Button Press: Manual Track

{mode: “manual”}, Manual Track button becomes Auto Track

Button Press: Auto Track

{mode: “auto”}, Auto Track button becomes Manual Track

Button Press: Stop Webcam

on_close() called, Websocket closed, Stop Webcam becomes
Start Webcam button

Button Press: Start Webcam

on_open() called, Websocket opened, Start Webcam
becomes Stop Webcam button

Button/Key Press: Up or W key

{command: “up”}

Button/Key Press: Left or A key

{command: “left"}

Button/Key Press: Down or S key

{command: “down”}

16

Button/Key Press: Right or D key {command: “right”}

On message GET "/images/img.png?time=" + new Date().getTime();

AKFCams ABOUT PORTAL » INFO

‘Web Stream

Start Webcam Manual Track Filters On

Fig. 5. Image stream page

PCB Design

The final embedded system PCB is the result of 4 iterations. The first PCB was designed
with a focus on reliability and easy debugging. The full 50mm x 50mm allowable board size was
used to reduce complexity of routing and vias were included on most wires for easy testing with
multimeters. To reduce thickness, all tall components (camera, headers and barrel jack) were
placed on one side of the board, with the wifi card and MCU on the other side.

After validating the schematic, we iterated on the design to reduce the size of the board
and add connections for servo motors. For this iteration, we focused on the best components
placement to attain the smallest size board. We also adjusted component placement to account
for the new pan and tilt servo motor base. The barrel jack was move to the bottom of the board
so that the power wire could stick out from the bottom of the camera and run down the front of
the base. This iteration had a board size of 43.82mm x 38.10mm.

A revision was made to the second iteration to fix a few missing connections to
capacitors and to remove the barrel jack. The barrel jack was replaced by headers. These were
attached to a barrel jack on the base of the webcam with thinner wires so that the barrel jack
would not obstruct movement as much as it had with the second board iteration. A separate
barrel jack to header breakout board was also designed. The silkscreen layer was improved
with better labels for each header, button, and LED. The board size was unchanged.

17

A final revision was made to drastically reduce the size of the board. We removed
mounting holes and instead elected for a press fit for the board. Component placement

remained roughly similar, but trace routing was redone completely to accommodate the smaller
size. This iteration had a board size of 41mm x 33.5mm.

- 00000000000

"
L

o
(=
-,
ax f
- B
-)
- ©
-

o
2

o
o

Version 2 and 3

18

=

B

Version 4 (final and soldered)

3D Printing

The enclosure for the webcam consists of two parts. The actual webcam is enclosed in a
rectangular case designed to center the camera sensor on the pan and tilt base. Holes were
included for the camera, power and status LEDs, reset and setup buttons, and for connections
to headers. Since no mounting holes were included on the actual PCB, we designed the case to
clamp down on the board. Since the webcam is designed to be placed on a desk and not be
mobile, we found this satisfactory in terms of retainment. The back lid of the enclosure includes
mounting holes to attach to the pan and tilt base. This lid is first attached to the mounting points,
then the PCB is placed onto the lid and wires plugged in. The front cover is then snapped onto
the lid. The second part of the enclosure houses the base of the pan and tilt motors to stabilize
them and prevent tipping. A slot for the barrel jack is also included.

Enclosure lid and base mount, PCB attached

19

- 44 § ————————»

1%
e

T
6.4 252

N
N -

'S

-
-

N
SEEN
Y

L1

°

B —g

Enclosure cover with schematic

Final Product

Initial Goal vs. Final Product
As mentioned in the introduction, the goals for the project were as follows:

1. Face detection on a remote server
a. Images should be marked with an indicator of faces present
b. Images and website should be rehosted on remote server
i. Users should be able to access the webcam from anywhere in the world
2. Webcam rotation/tilt based on face positioning in frame
a. This necessitates at least 1 frame per second for accurate tracking
3. Manual control of webcam position from the website

As highlighted above, we were able to hit all of our goals for the project. The Python
programs used Haar Cascades and bitwise masking for face detection and adding filters. They
also kept track of the face’s position relative to the center, which was used to determine whether
the servos should be actuated. The website allows for manual control of the webcam using
onscreen buttons and also present filter options.

Performance and Limitations

The webcam is able to stream 480p images consistently at around 3-4 frames per
second, provided a strong internet connection. However, one recurring issue is that the image

20

becomes corrupted and stops the image stream for several seconds before resetting and
functioning normally. This happened more often with poor WiFi connections. Improving frame
rate may not be possible with netcode alone. We may also require a fast frame buffer that can
take the processing load off of the microcontroller.

Final Product

Challenges Encountered

We struggled a lot initially with configuring the server to run all of our locally prototyped
python code. The bulk of our face detection required the OpenCV library for Python. This library
requires its own dependencies which we also had to install and configure. Eventually we had to
compile the OpenCYV library from source, install it, and link it to Python.

We also faced some of the real-world challenges of hosting a public server. The internet
is being consistently port scanned for open ports. Since our server is open on port 80, several
automated attempts have been made to conduct path traversal attacks. These attacks attempt
to traverse the server filesystem from our index.html file to also get to well known configuration
files. For example, an attacker’s automatic scanner might try to GET a poorly placed PHP admin
file to see if a path traversal attack is possible. Success would indicate a potentially vulnerable
site, prompting further manual investigation. However, with default NGINX configuration and
smart placement of web files, we were able to mitigate the impact of these scanners.

21

On a hardware level, setting up the PWM control was challenging since it required us to
look at all of the interrupts and understand the sometimes confusing variable names in Atmel
code examples. For example, the variable referring to the PWM period value was actually the
number of samples per cycle.

Regarding the PCB, debugging was difficult when we faced issues such as shorts or
airwires that Eagle missed. We were able to isolate the problems by looking at the board file
while also ensuring that the different power connections had the proper voltages. Luckily, the
only missed connection was in between two adjacent capacitors, so we were able to solder
them together. Soldering the board was slightly more difficult with the final compact version, but
we were able finish the first attempt. Eagle 8 also created some issues such as inconsistent
DRC'’s, though we were able to resolve this by having each of us check the board.

Planning and Organization

Gantt Chart
Start Date End Date Timeline Status

EECS 395/495 Mar2s Juns|
Define project goals Mar-30 Apr-2 . Complete
Research components Mar-30 Apr-4 || Complete
Prepare order Mar-30 Apr-4 || Complete
Create Motor Breakout Mar-31 Apr-6 [] Complete
Figure out script hosting on AWS Apr-5 Apr-18 - Complete
Modify MCU code to POST image to server Apr-17 Apr-21 . Complete
Update webcam board to include servo connector Apr-20 Apr-27 - Complete
Prototype python openCV locally Apr-17 May-3 _ Complete
Add POST response with object positioning to server code Apr-27 May-10 _ Complete
Rehost website on server May-4 May-12 [] Complete
Add image overlay for detected objects (Server) May-3 May-19 [] Complete
Prototype motor control code Apr-24 May-15 _ Complete
Complete final embedded system board May-8 May-18 - Complete
Modify mcu code to respond to object position May-15 May-26 - Complete
Solder final embedded system, resolve issues May-26 Jun-5 - Complete
Final Presentation May-30 Jun-5 - Complete

Burndown [

Communications Among Team Members

We were in constant communication through electronic means. We would have a
meeting at least once a week on Wednesdays. Since both of our schedules were not very rigid,
we did not have a standard meeting time but would be sure to meet at least once to start on the
main element of a task and then further split the task for independent completion.

Splitting Tasks Among Team Members

Since we laid out all our tasks on the Gantt Chart, we were able to split responsibilities
line by line. However, for the most part, we would meet in person to start work on a task and
only split the smaller subtasks if needed. We handled much of the server configuration early on
and focused on hardware later in the quarter. Server communication and configuration was led

22

by Fahad while face detection and filters were led by Daniel. Hardware/PCB design,
programming, and enclosures were split fairly evenly.

Conclusion - Daniel

The challenge to expand on the functionality of the given webcam was a valuable
opportunity to fully integrate and prototype a multifaceted design. This required us to fully utilize
our skills in areas such as PCB design, microcontroller programming, and in networking, which
was a unique and rewarding experience. Though learning about a broad range of topics from
server configuration to OpenCV was a difficult process, it was all extremely practical and
resulted in a well performing webcam with distinct features. As an electrical engineer who is
interested in computer science, | was very motivated to work on projects like designing a
compact PCB and learning about Haar Cascades. | also enjoyed the integration process of this
project, as it required a strong understanding of each component in the design.

Though we reached all of our goals, the time restraint of 10 weeks barred us from going
even further. | would have liked to improve the overall stability of our stream either by using
other components or improving our software. It would have been interesting to try more security
features for the webcam, such as it unlocking a door when it recognized a face.

| would like to continue using OpenCV for a variety of other applications, such as face
and object recognition, using tracking instead of detection at every frame, and being able to
train the model ourselves. In addition, it would be a fun challenge to have the webcam mounted
on a quadrotor or wheeled robot follow a person or object around.

References

[1] hitps://tools.ietf.org/html/rfc6455
[2] https://sublimerobots.com/2015/02/dancing-mustaches/

Full Code

MCU snippets have been included in the report. Full backend code can be found at
https://github.com/fahadkh/kfcams.

23

https://github.com/fahadkh/kfcams
https://sublimerobots.com/2015/02/dancing-mustaches/
https://tools.ietf.org/html/rfc6455

